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Conformance Metrics

* Fitness:
 How much of the observed behavior fits the model?
 Comparable to recall in data mining
* Two techniques: token-replay and alignments

* Precision: | .
* How much behavior does the model allow for that was not observed?

* Generalization:
 How well does the model to explain the underlying system?

* Simplicity:
* How simple is the model?
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Detecting Deviations

* Measuring conformance, implies
being able to detect and explain deviations

* Deviations can be detected by replaying event data
on models

* The intuitive method: Token replay
* The sound method: Alignments




Detecting Deviations: Token replay

* Manually execute the steps in the data in the model and record
produced, consumed, missing and remaining activations
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Detecting Deviations: Token replay

* Manually execute the steps in the data in the model and record
produced, consumed, missing and remaining activations

.- Produced activations: 6 Fitness:

Consumed activations: 6 %B(1-"/)+%(1-"/) =
Remaining activations: 2 % (1=2/g)+ % (1-2/,) =

.Token gy T Missing activations: 2 0.67
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* Consider a different trace:
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O A
X

O A >P
x>

+
X

o) o) [=]

'Token replay



TU / o
Token replay - problems

* Difficult to decide which labeled transition
to execute:
* Activities may appear on multiple transitions in the model
* Routing of activations may not be clear

* Remaining activations from the beginning of the trace can be used in
the end of the trace,

Tace __|Fitess
* Local diagnhosis may hide global problems, <A,B,D,E> 0.67

<D,C,B,E> 0.73

"Token replay



Detecting Deviations: Alignments

* Find an execution of the model that is as close as possible to the
observed trace
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Detecting Deviations : Alignments

* Find an execution of the model that is as close as possible to the
observed trace
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Detecting Deviations . Alignments

* Find an execution of the model that is as close as possible to the
observed trace

B dlEir0 o) o] ) e
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o E
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]
D ¢ BIE Synchronous activities: 3 | Fitness:
Model only: 1 1- +m)/(Iengthécrace + min model) ~
Log only: 1 1=2/(41a) =

Alignments w | 0.75
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An alignment contains the most likely

Al |g nments execution of the model, corresponding
to an observed execution

* Alignments explain where deviations occur and
which deviations occur

n:»
* Alignments:

a) Are globally optimal
b) Are robust to label duplication

c) Are robust to routing transitions An alignment shows where
d) Provide a true execution of deviations occurred and why these
the model deviation are considered as such

e) Can handle partially ordered traces



Alignments are not unique
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Consider the trace <A,D,E>
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Alignments are not unique

Consider the trace <A,D,E>

These alignments are all
optimal, yet they explain

deviations differently

N
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THE ALIGNMENT BETWEEN MODELS AND TRACES
= GIVEN:
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= CURRENT IMPLEMENTATION BASED ON THE NOTION OF
SYNCHRONOUS PRODUCT NET:
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Alignments: The Theory |l

Finding an alignment for a given model M and trace t for cost function c:

Identify the cheapest firing sequence from m, tom.in a
synchronous product model S, with cost function c

* For Reset/Inhibitor nets this problem is undecidable,
* For Petri nets this problem is EXPSPACE hard,
* For 1-safe nets, this problem is PSPACE hard,

* For Free-choice Petri nets this problem is NP hard, ‘e q
* For marked graphs, this problem is polynomial... \J -

Alignments
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Computing Alignments .
* The search space is the statespace of the = o
synchronous product model
* Each node is a combination of a state inthe (&
model and the remaining events in the trace fot
vV e
* Each arc is a move on model,

or a synchronous move
* A heuristic function estimates the remaining

distance to the final node (i.e. modelina
final state and all events executed)

hil
©)

* We find a shortest path!

Alignments
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Computing Alignments (A* with fast lowerbound)

Initialize HashBackedPriorityQueue g
While (peek(g) 1s not target t)
VisitedNode n = head(q)
If the estimate for node(n) 1is not exact
Compute the exact estimate for the remaining distance to t and
add n to the priority queue
continue
add n to the considered nodes
For each edge in the graph from node(n) to m
If m was considered before, continue
If m is in the queue with lower cost, continue
If m 1s 1in the queue with higher cost, update and reposition it
If m is new,
compute a fast lowerbound for the remaining distance to t
v = new VisitedNode (m)
set n a predecessor for v
add v to the priority queue
Return head (q)

Alignments
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Computing Alignments (A* with fast lowerbound)

O(log(size q)+a)

Initialize HashBackedPriorityQueue g
While (peek(g) 1s not target t)
VisitedNode n = head(q)
If the estimate for node(n) is not exact
Compute the exact estimate for the remaining distance to t and
add n to the priority queue
continue
add n to the considered nodes
For each edge in the graph from node(n) to m
If m was considered before, continue
If m is in the queue with lower cost, continue
If m 1s 1in the queue with higher cost, update and reposition it
If m is new,
compute a fast lowerbound for the remaining distance to t
v = new VisitedNode (m)
set n a predecessor for v
add v to the priority queue
Return head (q)

"Alignments
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Initialize HashBackedPriorityQueue g O(log(size q)+o)
While (peek(g) is not target t)
VisitedNode n = head(q)
If the estimate for node(n) 1s not exact
Compute the exact estimate for the remaining distance to t and
add n to the priority queue

continue
add n to the considered nodes
For each edge in the graph from node(n) to m
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If m is in the queue with higher cost, update and reposition it
If m is new,
compute a fast lowerbound for the remaining distance to t
v = new VisitedNode (m)
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add v to the priority queue
Return head (qg)
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If the estimate for node(n) 1s not exact
Compute the exact estimate for the remaining distance to t and

add n to the priority queue
continue O(log(size q)+ o)
add n to the considered nodes

For each edge in the graph from node(n) to m
If m was considered before, continue

O(log(size q)+ o)

If m is in the queue with lower cost, continue
If m is in the queue with higher cost, update and reposition it

If m is new,
compute a fast lowerbound for the remaining distance to t
v = new VisitedNode (m)
set n a predecessor for v »
add v to the priority queue
Return head (qg)

O(log(size q)+ o)
Alignments
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Estimating remaining distance |

 Naive estimation: 0 Trivial

e LP-based estimation:

“Polynomial”
*Minimize ¢C€.X

Where A.Xx = r .
c.x 2 c.x’ Ll.ttleto no
. . . difference
* [LP-based estimation: Exponentia in practice
* Hybrid ILP (1 sec for “I” part) Exponentia
* Caching LP basis solutions Exponentia

Alignments



Implementations: Estimator Versions

Petri nets: Process Trees:

* Dijkstra (estimator 0) * Naive (estimator parikh)
* Naive (estimator parikh)  LP (estimator using LP)

* |[LP (estimator using ILP) e Hybrid ILP (ILP & LP)

* Basis caching  Special constraints for OR
* Fast lowerbounds * Fast lowerbounds

* Basis caching within LP
 Statespace reduction (stubborn sets)

Computing alignments
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TU/
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Applications of Alignments

 Conformance Metrics
* Fitness
* Precision
* Generalization

e Enhancement

* Process discovery
* Genetic algorithms
* Model Repair

* Process model animation
* Animate models based on alignments (Sander Leemans)

* Automated compliance checking
e Uses anti-patterns and n-to-m mappings for activities (Elham Rhamezani)

Active research
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Active research on alighments

» Data/Resource aware alighnments

* Dealing with infinity and inverse function theory
* Multi perspective

* Online Alignments
* |n constant time and memory

* Incremental Alignments
* Using the ILP to the maximum to decompose the problem

* Alignments for Different model classes

* Mixed paradigm models (mix of declarative constraints and Petri nets)
* DCR Graphs

* Approximating alignments

Active research
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Conclusions

* Conformance Checking deals with the relation between
event logs and process models

e Alignments are foundational to process mining
* Form the basis for fitness/precision (and generalization)
* They explain exactly where deviations occur

 Computing alignments is computationally hard

* Many variants exist, but all guarantee:
* The projection to the log provides the observed trace
* The projection to the model provides a valid run thereof

HConclusions
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Future challenges

 Computational complexity
» Especially with data, resources
* Find tight bounds for online alignments
* Fast “approximate” alignments

* Determinism of alignments
e Same choices across alignments

e Obtaining the right models,
* Translate informal text to formal models
e Alignments on BPMN

* Industry adaptation

"Future challenges




