
Deviations in Business Processes
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The commonality 
between a process manual and 

a concrete barrier: they’ve 
been there for years and 

everybody walks around them.

Introduction to deviations
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Outline

• Introduction to deviations

• Replaying behavior

• Alignments

• Conclusions

Introduction to deviations
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Conformance Checking

Fitness

Simplicity

Precision

Generalization
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Conformance Metrics

• Fitness:
• How much of the observed behavior fits the model?

• Comparable to recall in data mining

• Two techniques: token-replay and alignments

• Precision:
• How much behavior does the model allow for that was not observed?

• Generalization:
• How well does the model to explain the underlying system?

• Simplicity:
• How simple is the model?
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Detecting Deviations

• Measuring conformance, implies 
being able to detect and explain deviations

• Deviations can be detected by replaying event data
on models

• The intuitive method: Token replay

• The sound method: Alignments
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Detecting Deviations: Token replay
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Detecting Deviations: Token replay

• Consider a different trace:
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Produced activations: 5
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Remaining activations: 1

Missing activations: 2
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Token replay - problems

• Difficult to decide which labeled transition 
to execute:
• Activities may appear on multiple transitions in the model

• Routing of activations may not be clear

• Remaining activations from the beginning of the trace can be used in 
the end of the trace,

• Local diagnosis may hide global problems,

Token replay

Trace Fitness

<A,B,D,E> 0.67

<D,C,B,E> 0.73
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Detecting Deviations: Alignments

• Find an execution of the model that is as close as possible to the 
observed trace
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Alignments

• Alignments explain where deviations occur and 
which deviations occur

• Alignments:
a) Are globally optimal 

b) Are robust to label duplication 

c) Are robust to routing transitions

d) Provide a true execution of 
the model

e) Can handle partially ordered traces

A

A

B

B D

C E

E

An alignment contains the most likely 
execution of the model, corresponding 

to an observed execution

An alignment shows where 
deviations occurred and why these 

deviation are considered as such
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Alignments are not unique
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Alignments are not unique
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optimal, yet they explain 

deviations differently
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Alignments: The Theory II

Finding an alignment for a given model M and trace t for cost function c: 

Identify the cheapest firing sequence from mi to mf in a 
synchronous product model S, with cost function c

• For Reset/Inhibitor nets this problem is undecidable, 

• For Petri nets this problem is EXPSPACE hard,

• For 1-safe nets, this problem is PSPACE hard,

• For Free-choice Petri nets this problem is NP hard,

• For marked graphs, this problem is polynomial…

Alignments



Computing Alignments

• The search space is the statespace of the 
synchronous product model

• Each node is a combination of a state in the 
model and the remaining events in the trace

• Each arc is a move on model, move on log 
or a synchronous move

• A heuristic function estimates the remaining 
distance to the final node (i.e. model in a 
final state and all events executed)

• We find a shortest path!

24 Alignments



Computing Alignments (A* with fast lowerbound)
Initialize HashBackedPriorityQueue q

While (peek(q) is not target t) 

VisitedNode n = head(q)

If the estimate for node(n) is not exact

Compute the exact estimate for the remaining distance to t and

add n to the priority queue

continue

add n to the considered nodes

For each edge in the graph from node(n) to m

If m was considered before, continue

If m is in the queue with lower cost, continue

If m is in the queue with higher cost, update and reposition it

If m is new,

compute a fast lowerbound for the remaining distance to t 

v = new VisitedNode(m)

set n a predecessor for v

add v to the priority queue

Return head(q)
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Computing Alignments (A* with fast lowerbound)
Initialize HashBackedPriorityQueue q
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Computing Alignments (A* with fast lowerbound)
Initialize HashBackedPriorityQueue q
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Computing Alignments (A* with fast lowerbound)
Initialize HashBackedPriorityQueue q
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Estimating remaining distance I

• Naïve estimation:   0 Trivial

• LP-based estimation: “Polynomial”
• Minimize c.x

Where    A.x = r

c.x ≥ c.x’

• ILP-based estimation: Exponential

• Hybrid ILP (1 sec for “I” part) Exponential

• Caching LP basis solutions Exponential

Little to no 
difference 
in practice
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Petri nets:

• Dijkstra (estimator 0)

• Naive (estimator parikh)

• ILP (estimator using ILP)

• Basis caching

• Fast lowerbounds

Process Trees:

• Naive (estimator parikh)

• LP (estimator using LP)

• Hybrid ILP (ILP & LP)

• Special constraints for OR

• Fast lowerbounds

• Basis caching within LP

• Statespace reduction (stubborn sets)

Implementations: Estimator Versions

Computing alignments30
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ProM (Lite) Demo

BPI Challenge 2012:
• Real Financial Institute

• Loan application process

• 13087 cases

• 92093 events

• 17 activities

• 61 resources (mostly human)

• http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

Updated for BPI Challenge 2017!
• http://dx.doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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Applications of Alignments
• Conformance Metrics

• Fitness 
• Precision
• Generalization

• Enhancement
• Process discovery

• Genetic algorithms
• Model Repair 

• Process model animation
• Animate models based on alignments (Sander Leemans)

• Automated compliance checking
• Uses anti-patterns and n-to-m mappings for activities (Elham Rhamezani)

Active research
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Active research on alignments

• Data/Resource aware alignments
• Dealing with infinity and inverse function theory
• Multi perspective 

• Online Alignments
• In constant time and memory 

• Incremental Alignments
• Using the ILP to the maximum to decompose the problem

• Alignments for Different model classes
• Mixed paradigm models (mix of declarative constraints and Petri nets)
• DCR Graphs

• Approximating alignments

….Active research
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Conclusions

• Conformance Checking deals with the relation between 
event logs and process models

• Alignments are foundational to process mining
• Form the basis for fitness/precision (and generalization)

• They explain exactly where deviations occur

• Computing alignments is computationally hard

• Many variants exist, but all guarantee:
• The projection to the log provides the observed trace

• The projection to the model provides a valid run thereof

Conclusions
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Future challenges

• Computational complexity 
• Especially with data, resources

• Find tight bounds for online alignments

• Fast “approximate” alignments

• Determinism of alignments 
• Same choices across alignments

• Obtaining the right models, 
• Translate informal text to formal models

• Alignments on BPMN

• Industry adaptation

Future challenges


